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The moment curvature relation 

Deformation of an element of a beam 
subjected to bending moments Mb 

The relation between curvature of neutral 
axis and bending moment is given by 
 
 
 
 E is modulus of elasticity and Izz is moment 

of inertia. 
 Longitudinal dimension of the beam will be 

in x direction. 
 Bending will take place in xy plane about z 

axis. 
 Instead of symbol Izz for moment of inertia, 

we use the abbreviation I. 
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Deflections due to Bending 

The moment curvature relation 

Geometry of the neutral axis of a beam bent in 
the xy plane 

Deflection of neutral axis 
from the knowledge of its 
curvature 
Slope of the neutral axis 
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Deflections due to Bending 

The moment curvature relation 

Geometry of the neutral axis of a beam bent in 
the xy plane 

From Figure 

 
 

 

 

The curvature is 
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Deflections due to Bending 

The moment curvature relation 

 
 
 
 Above equation is nonlinear differential equation for determination of 

v as a function of x2, if Mb is known.  

 When the slope angle  is small, then dv/dx is small compared to unity 

 

 

 Equation 1 is called moment curvature relation 

 The term EI is referred as flexural rigidity or bending modulus. 
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Deflections due to Bending 

Integration of the moment curvature relation 

 Integration of moment curvature relation leads to the correct 

deflection curve. 

 However suitable boundary conditions should be chosen to determine 

the integration constants. 

 Figure shows the suitable boundary condition encountered in various 

supports. 
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Deflections due to Bending 

Problem: 
The simply supported beam of uniform cross section shown in figure 
is subjected to a concentrated load W. It is desired to obtained 
maximum slope and maximum deflection. 

L = 3.70m 
a = b = 1.85m 
W = 1.8kN 
E = 11GPa 
I = 3.33  107mm4 
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Deflections due to Bending 

Solution: 

 Singularity function method is used to find bending moment. 

 The maximum deflection is the point at which the slope is zero. 

 Therefore maximum deflection will be at x = L/2. 

 Maximum slope will be at x = 0 or at x = L. 

 
Maximum Deflection vmax will be 
  
  
Maximum slope max will be 
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Deflections due to Bending 

Problem: 
A uniform cantilever beam has bending modulus EI and length L. It is 
built in at A and subjected to a concentrated force P and moment M 
applied at B as shown in figure. Find deflection  and slope  at 
point B. 
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Deflections due to Bending 

Solution: 

 Deflection  at point B 

will be 

 

 

 Deflection  at point B 

will be 
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Deflections due to Bending 

Superposition 

 The total deflection is the sum of deflections due to individual 

load (Mb) 

  The deflections in the standard cases are given in table 8.1. The 

solution of the original problem then takes the form of a 

superposition of these solutions. 

  Deflection of a beam is linearly proportional to the applied load 

 The linearity between curvature and deflection is based on 

assumption that 

  Deflections are small 

  material is linearly elastic 
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Deflections due to Bending 

Problem: 
The cantilever beam shown in figure carries a concentrated load P 
and end moment Mo applied at B as shown in figure. Find deflection 
 at point C in terms of the constant bending modulus EI. 
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Solution: 
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The Load-Deflection Differential Equation 

 An alternative method to solve beam deflection problem. 

 The differential equations for force and moment equilibrium are 

 

Therefore, 

 

 Using above equation and moment curvature relation, we obtained a 
single differential equation relating transvers load-intensity function q 
and transverse deflection v. 
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Deflections due to Bending 

Boundary Conditions 

 Figure shows the suitable boundary conditions corresponds to four 

types of supports. 
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Deflections due to Bending 

Problem 

The beam shown in figure is built-in 

at A and D and has an offset arm 

welded to the beam at the point B 

with a load W attached to the arm at 

C. It is required to find the deflection 

of the beam at the point B. 
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Deflections due to Bending 

Solution 

Load intensity 

 

Boundary conditions 

 

Load-deflection differential equation 
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Deflections due to Bending 

Solution 

By integrating previous equation 

 

 

 

 

 

Boundary conditions gives four integration constants 
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Deflections due to Bending 

Solution 

By inserting boundary conditions in deflection equation 

 

 

Deflection at point B, by setting x = L/3 
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Deflections due to Bending 

Castigliano’s Method to find the deflections 
 Strain energy due to transverse loads 

 

 

 

 

 

 

 If total elastic energy in a system is expressed in terms of external 
loads Pi, the corresponding in-line deflections i are given by partial 
derivatives 
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Deflections due to Bending 

Castigliano’s Method to find the deflections 
Important 

 If, we may wish to know deflection at a point where external 

force is zero . 

 In such case a fictitious force Q is to be considered at that point. 

 Deflection at that point in the direction of Q is given by U/Q 

and setting Q = 0. 

 

Similarly slope is given by 
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Deflections due to Bending 

Castigliano’s Method to find the deflections 
Simplified equation 

 Deflection 

 

 

 

 

 Slope 
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Deflections due to Bending 

Problem 

Using Castigliano’s method, determine the slope and deflection at 

point B (loading diagram is shown in figure below).   
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Deflections due to Bending 

Solution 

Bending moment =    and   

     

Deflection at point B will be 

 

 

 

After solving above equation  
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Deflections due to Bending 

Solution 

Bending moment =    and   

     

Slope at point B will be 

 

 

 

After solving above equation  
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Deflections due to Bending 

Problem 

Using Castigliano’s method, determine the reaction at point A. 

Take a = b = L/2 
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Deflections due to Bending 

Solution 

We know that deflection at point A is zero. Let’s find reaction at A. 

 

Bending moment =    and   

     

Deflection at point A will be 
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Deflections due to Bending 

Solution 
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Deflections due to Bending 

Problem 

Using Castigliano’s method, determine horizontal deflection at point 

A (consider deflection due to only bending moments). 
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