MECHANICS OF SOLIDS (ME F211)

Mechanics of Solids

Chapter-8

Deflections due to Bending

Contents:

\square The moment curvature relation
Integration of moment curvature relation
\square Principle of Superposition
\square Load- deflection differential equation
\square Energy methods

Deflections due to Bending

The moment curvature relation

The relation between curvature of neutral axis and bending moment is given by

$$
\frac{1}{\rho}=\lim _{\Delta s \rightarrow 0} \frac{\Delta \phi}{\Delta s}=\frac{d \phi}{d s}=\frac{M_{b}}{E I_{z z}}
$$

$\square E$ is modulus of elasticity and $I_{z z}$ is moment of inertia.
Longitudinal dimension of the beam will be in x direction.
\square Bending will take place in $x y$ plane about z axis.
\square Instead of symbol $I_{z z}$ for moment of inertia, we use the abbreviation $/$.

Deformation of an element of a beam subjected to bending moments M_{b}

Deflections due to Bending

The moment curvature relation

Deflection of neutral axis from the knowledge of its curvature Slope of the neutral axis

$$
\frac{d v}{d x}=\tan \phi
$$

Differential with arc length s.

$$
\begin{aligned}
& \frac{d^{2} v}{d x^{2}} \frac{d x}{d s}=\sec ^{2} \phi \frac{d \phi}{d s} \\
& \frac{d \phi}{d s}=\frac{d^{2} v}{d x^{2}} \frac{d x}{d s} \cos ^{2} \phi
\end{aligned}
$$

Geometry of the neutral axis of a beam bent in the $x y$ plane

Deflections due to Bending

The moment curvature relation

From Figure

$$
\cos \phi=\frac{d x}{d s}=\frac{1}{\left[1+(d v / d x)^{2}\right]^{1 / 2}}
$$

The curvature is

$$
\frac{d \phi}{d s}=\frac{d^{2} v / d x^{2}}{\left[1+(d v / d x)^{2}\right]^{3 / 2}}
$$

Geometry of the neutral axis of a beam bent in the $x y$ plane

Deflections due to Bending

The moment curvature relation

$$
\frac{d \phi}{d s}=\frac{M_{b}}{E I_{z z}} \quad \Rightarrow \quad \frac{d^{2} v / d x^{2}}{\left[1+(d v / d x)^{2}\right]^{3 / 2}}=\frac{M_{b}}{E I}
$$

\square Above equation is nonlinear differential equation for determination of v as a function of x^{2}, if M_{b} is known.
\square When the slope angle ϕ is small, then $d v / d x$ is small compared to unity

$$
\frac{d \phi}{d s} \approx \frac{d^{2} v}{d x^{2}} \quad \frac{d^{2} v}{d x^{2}}=\frac{M_{b}}{E I} \quad-----1
$$

\square Equation 1 is called moment curvature relation
\square The term El is referred as flexural rigidity or bending modulus.

Deflections due to Bending

Integration of the moment curvature relation

- Integration of moment curvature relation leads to the correct deflection curve.
\square However suitable boundary conditions should be chosen to determine the integration constants.
\square Figure shows the suitable boundary condition encountered in various supports.

Deflections due to Bending

Problem:

The simply supported beam of uniform cross section shown in figure is subjected to a concentrated load W. It is desired to obtained maximum slope and maximum deflection.

Deflections due to Bending

Solution:

\square Singularity function method is used to find bending moment.
The maximum deflection is the point at which the slope is zero.
Therefore maximum deflection will be at $x=L / 2$.
\square Maximum slope will be at $x=0$ or at $x=L$.

Maximum Deflection $v_{\text {max }}$ will be

$$
v_{\max }=(v)_{x=L / 2}=-\frac{W L^{3}}{48 E I}=5.19 \mathrm{~mm}
$$

Maximum slope $\phi_{\max }$ will be $\phi_{\max }=\left(\frac{d v}{d x}\right)_{x=0}=-\frac{W L^{2}}{16 E I}=-0.0042$ rad $=0.24^{\circ}$

Deflections due to Bending

Problem:

A uniform cantilever beam has bending modulus $E I$ and length L. It is built in at A and subjected to a concentrated force P and moment M applied at B as shown in figure. Find deflection δ and slope ϕ at point B.

Deflections due to Bending

Solution:

D Deflection δ at point B will be

$$
\delta_{B}=-(v)_{x=L}=\frac{P L^{3}}{3 E I}+\frac{M L^{2}}{2 E I}
$$

[Deflection ϕ at point B will be

$$
\phi_{B}=-\left(\frac{d v}{d x}\right)_{x=L}=\frac{P L^{2}}{2 E I}+\frac{M L}{E I}
$$

Deflections due to Bending

Superposition

The total deflection is the sum of deflections due to individual load (M_{b})

- The deflections in the standard cases are given in table 8.1. The solution of the original problem then takes the form of a superposition of these solutions.
\square Deflection of a beam is linearly proportional to the applied load
The linearity between curvature and deflection is based on assumption that
- Deflections are small
- material is linearly elastic

Deflections due to Bending

Problem:

The cantilever beam shown in figure carries a concentrated load P and end moment M_{o} applied at B as shown in figure. Find deflection δ at point C in terms of the constant bending modulus $E I$.

Deflections due to Bending

Solution:

Deflections due to Bending

The Load-Deflection Differential Equation

- An alternative method to solve beam deflection problem.
\square The differential equations for force and moment equilibrium are

$$
\frac{d V}{d x}+q=0 \quad \text { and } \quad \frac{d M_{b}}{d x}+V=0
$$

Therefore,

$$
\frac{d^{2} M_{b}}{d x^{2}}=q
$$

\square Using above equation and moment curvature relation, we obtained a single differential equation relating transvers load-intensity function q and transverse deflection v.

$$
\frac{d^{2}}{d x^{2}}\left(E I \frac{d^{2} v}{d x^{2}}\right)=q
$$

Deflections due to Bending

Boundary Conditions

\square Figure shows the suitable boundary conditions corresponds to four types of supports.

Deflections due to Bending

Problem

The beam shown in figure is built-in at A and D and has an offset arm welded to the beam at the point B with a load W attached to the arm at C. It is required to find the deflection of the beam at the point B.

Deflections due to Bending

Solution

Load intensity

$$
q=\frac{W L}{3}\langle x-L / 3\rangle_{-2}-W\langle x-L / 3\rangle_{-1}
$$

Boundary conditions

$$
v=0 \text { and } \frac{d v}{d x}=0 \quad \text { at } x=0 \text { and } L
$$

Load-deflection differential equation

$$
E I \frac{d^{4} v}{d x^{4}}=W\left(\frac{L}{3}\langle x-L / 3\rangle_{-2}-\langle x-L / 3\rangle_{-1}\right)
$$

Deflections due to Bending

Solution

By integrating previous equation

$$
\frac{d v}{d x}=\frac{W}{E I}\left(\frac{L}{3}\langle x-L / 3\rangle^{1}-\frac{\langle x-L / 3\rangle^{2}}{2}+c_{1} \frac{x^{2}}{2}+c_{2} x+c_{3}\right)
$$

$$
v=\frac{W}{E I}\left(\frac{L}{6}\langle x-L / 3\rangle^{2}-\frac{\langle x-L / 3\rangle^{3}}{6}+c_{1} \frac{x^{3}}{6}+c_{2} \frac{x^{2}}{2}+c_{3} x+c_{4}\right)
$$

Boundary conditions gives four integration constants

$$
c_{1}=\frac{8}{27} ; \quad c_{2}=-\frac{4}{27} L ; \quad c_{3}=c_{4}=0
$$

Deflections due to Bending

Solution

By inserting boundary conditions in deflection equation

$$
v=\frac{W}{27 E I}\left(\frac{9}{2} L\langle x-L / 3\rangle^{2}-\frac{9}{2}\langle x-L / 3\rangle^{3}+\frac{4}{3} x^{3}-2 L x^{2}\right)
$$

Deflection at point B, by setting $x=L / 3$

$$
\delta_{B}=-(v)_{x=L / 3}=\frac{14 W L^{3}}{2187 E I}
$$

Deflections due to Bending

Castigliano's Method to find the deflections

\square Strain energy due to transverse loads

$$
\begin{aligned}
& U=\frac{1}{2} \iiint_{x} \sigma_{x} \varepsilon_{x} d x d y d z=\iiint_{x} \frac{\sigma_{x}^{2}}{2 E} d x d y d z \\
& U=\iiint_{L} \frac{1}{2 E}\left(\frac{M_{b} y}{I}\right)^{2} d x d y d z=\int_{L} \frac{M_{b}^{2}}{2 E I^{2}} d x \iint_{A} y^{2} d y d z \\
& U=\int_{L} \frac{M_{b}^{2}}{2 E I} d x
\end{aligned}
$$

\square If total elastic energy in a system is expressed in terms of external loads P_{i}, the corresponding in-line deflections δ_{i} are given by partial derivatives

$$
\delta_{i}=\frac{\partial U}{\partial P_{i}}
$$

Castigliano's Method to find the deflections

Important
\square If, we may wish to know deflection at a point where external force is zero .
\square In such case a fictitious force Q is to be considered at that point.
\square Deflection at that point in the direction of Q is given by $\partial \mathrm{U} / \partial Q$ and setting $Q=0$.

Similarly slope is given by

$$
\phi=\frac{\partial U}{\partial M}
$$

Deflections due to Bending

Castigliano's Method to find the deflections

Simplified equation

- Deflection

$$
\delta_{i}=\frac{\partial U}{\partial P_{i}}=\int_{0}^{L} \frac{2 M_{b}}{2 E I} \frac{\partial M_{b}}{\partial P_{i}} d x=\int_{0}^{L} \frac{M_{b}}{E I} \frac{\partial M_{b}}{\partial P_{i}} d x
$$

\square Slope

$$
\phi_{i}=\frac{\partial U}{\partial M_{i}}=\int_{0}^{L} \frac{2 M_{b}}{2 E I} \frac{\partial M_{b}}{\partial M_{i}} d x=\int_{0}^{L} \frac{M_{b}}{E I} \frac{\partial M_{b}}{\partial M_{i}} d x
$$

Deflections due to Bending

Problem

Using Castigliano's method, determine the slope and deflection at point B (loading diagram is shown in figure below).

Deflections due to Bending

Solution
Bending moment $=M_{b}=-P(L-x)-M \quad$ and $\quad \frac{\partial M_{b}}{\partial P}=-(L-x)$

Deflection at point B will be

$$
\delta_{B}=\frac{\partial U}{\partial P}=\int_{0}^{L} \frac{2 M_{b}}{2 E I} \frac{\partial M_{b}}{\partial P_{i}} d x=\int_{0}^{L} \frac{M_{b}}{E I} \frac{\partial M_{b}}{\partial P} d x
$$

After solving above equation

$$
\delta_{B}=\frac{P L^{3}}{3 E I}+\frac{M L^{2}}{2 E I}
$$

Deflections due to Bending

Solution
Bending moment $=M_{b}=-P(L-x)-M$ and

$$
\frac{\partial M_{b}}{\partial M}=-1
$$

Slope at point B will be

$$
\phi_{B}=\frac{\partial U}{\partial M}=\int_{0}^{L} \frac{2 M_{b}}{2 E I} \frac{\partial M_{b}}{\partial M} d x=\int_{0}^{L} \frac{M_{b}}{E I} \frac{\partial M_{b}}{\partial M} d x
$$

After solving above equation

$$
\phi_{B}=\frac{P L^{2}}{2 E I}+\frac{M L}{E I}
$$

Deflections due to Bending

Problem

Using Castigliano's method, determine the reaction at point A.
Take $a=b=L / 2$

Deflections due to Bending

Solution

We know that deflection at point A is zero. Let's find reaction at A.

Bending moment $=M_{b}=R_{A} x-P\langle(x-a)\rangle^{1}$ and

$$
\frac{\partial M_{b}}{\partial R_{A}}=x
$$

Deflection at point A will be

$$
\begin{gathered}
\delta_{A}=\int_{0}^{L} \frac{M_{b}}{E I} \frac{\partial M_{b}}{R_{A}} d x=0 \\
\delta_{A}=0=\frac{1}{E I} \int_{0}^{L}\left(R_{A} x^{2}-P x<x-\frac{L}{2}>\right) d x
\end{gathered}
$$

Deflections due to Bending

Solution

$$
\left.0=R_{A}\left[\frac{x^{3}}{3}\right]_{0}^{L}-P[x]\left\langle x-\frac{L}{2}\right\rangle-\int \frac{d x}{d x} \int\left\langle x-\frac{L}{2}\right\rangle\right]_{0}^{L}
$$

$$
0=\frac{R_{A} L^{3}}{3}-\frac{5 P L^{3}}{48}
$$

$$
R_{A}=\frac{5}{16} P
$$

Deflections due to Bending

Problem

Using Castigliano's method, determine horizontal deflection at point A (consider deflection due to only bending moments).

ANS. $\delta_{A}=\frac{13 P L^{3}}{192 E I}$

Deflections due to Bending

References

1. Introduction to Mechanics of Solids by S. H. Crandall et al (In SI units), McGraw-Hill
